

Gas in Clusters: X-ray and SZE Observations

Max Bonamente, *UAHuntsville and NASA NSSTC*Esra Bulbul *and* Nicole Hasler, *UAHuntsville*Marshall Joy, *NASA MSFC*and collaborators on the Sunyaev-Zeldovich Array project

OUTLINE

- Development of new analytic model of the ICM based on the polytropic equation of state and validation with Chandra X-ray and Sunyaev-Zeldovich Array observations
- Comparison on X-ray and SZE measurements
- Measurement of the gas fraction independent of cosmology
- Measurement of the Hubble constant
- The effect of He sedimentation on cluster masses

hydrogen 1)		.5.		25		1.54	s	- 5	**	9.5.A	1.77	#CC.	5.6	55.	5.5.	- 57	helium 2 He
1.0079 3 Li	beryllium 4 Be												boron 5	carbon 6 C	nitrogen 7	oxygen 8	fluorine 9	10 Ne
6.941 sodium 11	9.0122 magnesium 12												10.811 aluminium 13	12.011 silicon 14	14.007 phosphorus 15	15.999 sulfur 16	18.998 chlorine 17	20.180 argon 18
Na 22.990 potassium 19	Mg 24.305 calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	26.982 gallium 31	28.086 germanium 32	30.974 arsenic 33	32.065 selenium 34	35.453 bromine 35	39.948 krypton 36
39.098 rubidium 37	Ca 40.078 strontium 38		\$c 44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42	54.938 technetium 43	55.845 ruthenium	58.933 rhodium 45	58,693 palladium 46	63.546 silver 47	Zn 65.39 cadmium 48	69.723 indium 49	72.61 tin 50	As 74.922 antimony 51	78.96 tellurium 52	Pr 79.904 iodine 53	83.80 xenon 54
85.468 caesium 55	Sr 87.62 barium 56	57-70	88.906 lutetium 71	Zr 91.224 hafnium 72	92.906 tantalum 73	95.94 tungsten 74	Tc [98] rhenium 75	Ru 101.07 osmium 76	Rh 102.91 iridium 77	Pd 106.42 platinum 78	Ag 107.87 gold 79	Cd 112.41 mercury 80	114.82 thallium 81	\$n 118.71 lead 82	Sb 121.76 bismuth 83	Te 127.60 polonium 84	126.90 astatine 85	Xe 131.29 radon 86
Cs 132.91 francium	Ba 137.33 radium	*	Lu 174.97 lawrencium	Hf 178.49 rutherfordium	Ta 180.95 dubnium	183.84 seaborgium	Re 186.21 bohrium	Os 190.23 hassium	192.22 meitnerium	Pt 195.08 ununnilium	Au 196.97 unununium	Hg 200.59 ununbium	204.38	Pb 207.2 ununquadium	Bi 208.98	Po [209]	At	Rn
87 Fr	88 Ra [226]	89-102 * *	103 Lr [262]	104 Rf [261]	105 Db	106 Sg [266]	107 Bh	108 Hs [269]	109 Mt [268]	Uun [271]	111 Uuu [272]	112 Uub		114 Uuq	ē.			

*Lanthanide series

* * Actinide series

- 1	lanthanum				promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
- 1	57	58	59	60	61	62	63	64	65	66	67	68	69	70
١	l a	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Fr	Tm	Yh
- 1	La	CC		144	1 111		Ц	Ou	10	Dy	110	I I		1 10
ı	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
-1	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
١	Λ.	Th	Pa	TT.	Np	Dii	Λm	Cm	Bk	Cf	Fe	Em	Md	No
- 1	AC	111	Га	U	IAD	Fu	AIII	CIII	DN	CI	LS	Fm	IVIC	140
Į	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

1. Development of a new analytic model of the ICM

Presently, Vikhlinin et al. (2006) and Nagai et al. (2007) models are main options when fitting X-ray and SZE observations

Figure: The distribution of the surface brightness (left) and temperature (right) for A133 (Vikhlinin et al. 2006)

Models of density and temperature produce excellent goodness of fit to X-ray data, but are not ideal for a joint modeling of the pressure, which is the Sunyaev-Zeldovich Effect observable.

1.1 The mass density distribution

Assume a mass density (for the total gravitational mass) following a distribution by Suto et al. (1998)

$$\rho_{tot}(r) = \frac{\rho_i}{(r/r_s)(1 + r/r_s)^{\beta}}$$

1.2 The gas density and temperature

Use a polytropic equation of state for the hot gas:

$$\left| \frac{n_{e,poly}(r)}{n_{e0}} = \left[\frac{T_{poly}(r)}{T_0} \right]^n \right|$$

1.3 The hydrostatic equilibrium equation

Assume dynamic equilibrium of mass and the hot gas:

$$\frac{1}{\mu m_p n_e(r)} \frac{dP_e}{dr} = -\frac{GM(r)}{r^2}$$

1.4 <u>Modification of equations to account for cooling of gas</u>
The model derived so far is modified by a phenomenological
`core taper' function (identical to that of Vikhlinin et al. 2006):

$$\tau_{cool}(r) = \frac{\alpha + (r/r_{cool})^{\gamma}}{1 + (r/r_{cool})^{\gamma}}$$

and therefore the temperature and density profiles becomes:

$$T(r) = T_{poly}(r)\tau_{cool}(r)$$

$$= T_0 \left(\frac{1}{(\beta - 2)} \frac{(1 + r/r_s)^{\beta - 2} - 1}{r/r_s(1 + r/r_s)^{\beta - 2}}\right) \frac{\alpha + (r/r_{cool})^{\gamma}}{1 + (r/r_{cool})^{\gamma}}$$

$$n_e(r) = n_{e,poly}(r)\tau_{cool}^{-1}$$

$$= n_{e0} \left(\frac{1}{(\beta - 2)} \frac{(1 + r/r_s)^{\beta - 2} - 1}{r/r_s(1 + r/r_s)^{\beta - 2}}\right)^n \frac{1 + (r/r_{cool})^{\gamma}}{\alpha + (r/r_{cool})^{\gamma}}$$

Figure: The distribution of the temperature and density as function of radius (Bulbul et al. 2010)

In summary:

- 3 shape parameters and 2 normalizations for global properties
- 3 additional parameters for cool-core clusters

2. Validation of the model with Chandra observations

2.1 <u>Application to imaging spectroscopy Chandra observations</u> Two high S/N observations of Abell 2204 and Abell 1835 are fit well by the model

Figure: Images of Abell 1835 and Abell 2204, 0.7-7 keV band, Chandra observations

Figure: Fit of the polytropic model to the surface brightness and temperature profiles (Bulbul et al. 2010)

3. Application to Sunyaev-Zeldovich Array observations

• Observable: Temperature decrement

$$\Delta T_{CMB} = f_{(x,T_e)} T_{CMB} \int \sigma_T n_e \frac{k_B T_e}{m_e c^2} dl$$

3.1 <u>The Sunyaev-Zeldovich Array interferometer</u> The SZA is an 8-element interferometer located in central California, operating at 30 GHz and 90 GHz

Figure: The SZA interferometric array as part of CARMA, at the Cedar Flats location in California

Figure: SZA images of Abell 1835 and Abell 2204 at 30 GHz (Hasler et al. 2010)

Joint fit to Chandra and SZA data

Figure: Radial plots of surface brightness and temperature (X-ray), and real part of the visibilities as function of (u,v) radius (SZE) for Abell 1835 and Abell 2004 (Hasler et al. 2010)

3.2 <u>Measurement of masses and distances without priors on cosmology</u>

Joint X-ray and SZE observations results in a unique method of measurement of masses that is cosmology independent:

$$S_{\mathrm{x}} = \frac{1}{4\pi(1+z)^4} D_{\mathrm{A}} \int n_e(\ell)^2 \Lambda_{ee}(T_e(\ell), A(\ell)) d\ell$$

$$\Delta T_{\rm sz} = T_{\rm\scriptscriptstyle CMB} f(x) D_{\rm\scriptscriptstyle A} \int \sigma_{\rm\scriptscriptstyle T} n_e(\ell) \frac{k T_e(\ell)}{m_e c^2} d\ell$$

Both density and distance can be measured simultaneously, masses calculated without assuming cosmological parameters .

	Iv	IEASUREMI	MEASUREMENTS AT R_{500}					
Cluster	r_{2500}	$M_{\rm gas}$	$M_{ m tot}$	$f_{\mathbf{gas}}$	r_{500}	$M_{\mathbf{gas}}$	$M_{ m tot}$	f_{gas}
	(")	$(10^{13} M_{\odot})$	$(10^{14} M_{\odot})$		(")	$(10^{13} M_{\odot})$	$(10^{14} M_{\odot})$	
Abell 1835	$152.2\pm^{27.5}_{22.1}$	$5.49\pm_{1.15}^{1.28}$	$4.12\pm_{0.34}^{0.31}$	$0.132\pm_{0.020}^{0.022}$	$313.6\pm_{43.9}^{55.8}$	$13.43\pm_{2.83}^{3.17}$	$7.44\pm_{0.73}^{0.68}$	$0.180\pm_{0.03}^{0.03}$
Abell 2204	$182.9\pm_{25.4}^{32.3}$	$5.24\pm_{0.74}^{0.87}$	$3.52\pm_{0.18}^{0.20}$	$0.149\pm_{0.015}^{0.017}$	$402.4\pm_{53.1}^{67.6}$	$14.86\pm_{2.10}^{2.50}$	$7.49\pm_{0.50}^{0.52}$	$0.200\pm_{0.02}^{0.02}$

Figure: Measurement of the gas fraction from joint X-ray and SZE data, for Abell 1835 and Abell 2204 (Hasler et al. 2010)

If one wants to measure masses at a given density contrast, such as $\boldsymbol{r}_{_{500}}$, then the calculation of the outer radius carries an uncertainty.

$$M_{\rm tot}(r_{\Delta}) = 4/3\pi r_{\Delta}^3 \Delta \rho_c$$

4. Cosmological applications

- 4.1 <u>Comparison of X-ray and SZE measurements</u> Comparison between masses inferred from the two observables can be used to determine if X-rays and the SZE observe the same gas (e.g., if there is non-thermal X-ray emission or not)
- In Laroque et al (2006) we measured the gas mass from the two observables (Chandra and OVRO/BIMA data), and found consistent results.
- Good agreement between X-rays and SZ indicated from Chandra and SZA data (Hasler et al. 2010)
- Work by several authors (e.g.,Lieu et al. 2006) from WMAP data reports discrepancy in the analysis of samples of clusters
- Lueker et al (2010) indicate a possible discrepancy between X-ray and SPT power spectrum; more work in progress using Chandra and SPT observations of individual clusters.

Figure: preliminary results on the Chandra/SPT Comparison (Plagge et al. 2011)

4.2 <u>Use of the gas fraction template for cosmology</u>

Work in progress on the measurement of the gas fraction independent of cosmology, for a sample of 30 clusters at z=0.1-1.1.

Knowing the distribution of f_{gs} as function of redshift can be used to constrain dark energy (Sasaki 1996, Pen 1997, Allen et al. 2008, Ettori 2009).

Figure: The X-ray method of measuring masses depends on cosmology (from Allen et al. 2008)

4.3 <u>Measurement of the Hubble constant</u> Using $D_A(z)$ information alone, the measurement of the Hubble constant depends on priors on Ω_A .

Figure: Measurement of the Hubble constant from earlier OVRO/BIMA observations (Bonamente et al. 2006)

Work in progress on a sample of 30 clusters at z=0.1-1.1...

4.4 <u>The effect of He sedimentation on cluster masses</u> Radial gradients of He (and other elements) can lead to biases in the measurement of cluster masses

Figure:Effect of the Peng & Nagai 2009 He sedimentation model on mean molecuar numbers (Bulbul et al. 2010)

Figure: Effect of the Peng & Nagai 2009 He sedimentation model on cluster masses (Bulbul et al. 2010)

Actual *measurement* of He sedimentation can be obtained by combining X-ray and SZE observations, though very challenging at present.

CONCLUSIONS

- We developed and validated a new model for the analysis of X-ray and SZE observations of galaxy clusters.
- The model is especially designed for applications in which both X-ray and SZE observations must be modeled simultaneously
- Applications include the measurement of gas fraction independent of cosmology, constraints on Hubble constant and dark energy, and the sedimentation of heavy ions

3.3 Comparison of new model with Nagai et al. (2007) model

Two models provide equally acceptable fits, and measure the same Y, by using the same number of degrees of freedom.

Cluster	$Y_{cyl}(10^{-5})$
<u>Abell 1835</u>	
Poly	$9.90\pm_{0.78}^{0.85}$
N08	$10.01\pm^{0.84}_{0.76}$
<u>Abell 2204</u>	
Poly	$5.57\pm^{0.60}_{0.52}$
N08	$6.05\pm^{0.80}_{0.64}$

3.4 Preliminary comparison of with Vikhlinin et al. (2006) model

(5 model parameters)

(7 model parameters)